Up: Operadores fraccionarios para medidas
Previous: Espacios de Lipschitz ``
- C
- M. Christ. Singular Integral Operators. Regional
Conf. Ser. in Math. 77, Amer. Math. Soc., Providence, 1990.
- CG
- R. Coifman and M. de Guzmán. Singular integrals
and multipliers on homogeneous spaces. Collection of articles
dedicated to Alberto González Domínguez on his sixty-fifth
birthday. Rev. Un. Mat. Argentina 25 (1970/71), 137-143.
- CM
- R. Coifman and Y. Meyer. Wavelets.
Calderón-Zygmund and multilinear operators Cambridge studies in
advanced Mathematics 48, 1997.
- CW1
- R. Coifman and Guido Weiss. Analyse harmonique
non-commutative sur certains espaces homogènes. Étude de
certaines intégrales singulières. Lecture Notes in Mathematics,
Vol. 242. Springer-Verlag, Berlin-New York, 1971. v+160 pp.
- CW2
- R. Coifman and Guido Weiss. Extensions of Hardy
spaces and their use in analysis. Bull. Amer. Math. Soc. 83
(1977), no. 4, 569-645.
- D1
- Guy David.
Opérateurs intégraux singuliers sur certaines courbes du plan
complexe. Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1,
157-189.
- D2
- Guy David. Wavelets and Singular Integrals on
Curves and Surfaces. Lecture Notes in Math. 1465,
Springer-Verlag, Berlin, 1991.
- GM1
- J. García-Cuerva and J.M. Martell. Weighted
inequalities and vector-valued Calderón-Zygmund operators on
non-homogeneous spaces. Public. Math. Vol 44(2), (2000), pp.
613-640.
- GM2
- J. García-Cuerva and J.M. Martell. Two-weight
norm inequalities for maximal operators and fractional integrals
on non-homogeneous spaces. Indiana University Mathematics
Journal, Vol 50(3), (2001)
- GGW
- A. E. Gatto, C. E. Gutiérrez, R. L.Wheeden.
On weighted fractional integrals. Conference on harmonic
analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill.,
1981), 124-137, Wadsworth Math. Ser., Wadsworth, Belmont, Calif.,
1983.
- GSV
- A. E. Gatto, C. Segovia, S. Vági, On fractional
differentiation and integration on spaces of homogeneous type,
Rev. Mat. Iberoamericana 12, no. 1,(1996) 111-145.
- GV1
- A. E. Gatto, S. Vági, Fractional integrals
on spaces of homogeneous type. Analysis and partial differential
equations, 171-216, Lecture Notes in Pure and Appl. Math., 122,
Dekker, New York, 1990.
- GV2
- A. E. Gatto, S. Vági, On functions
arising as potentials on spaces of homogeneous type. Proc. Amer.
Math. Soc. 125, no. 4,(1997) 1149-1152.
- MMNO
- J. Mateu, P. Mattila, A. Nicolau and J. Orobitg.
for non doubling measures. Duke Math. J. 102 (2000), no.
3, 533-565.
- NTV1
- F. Nazarov, S. Treil and A. Volberg. Cauchy integral
and Calderón-Zygmund operators on nonhomogeneous spaces. Int.
Math. Res. Not. 15 (1997), 703-726.
- NTV2
- F. Nazarov, S. Treil and A. Volberg.
Weak type estimates and Cotlar inequalities for
Calderón-Zygmund operators in nonhomogeneous spaces. Int. Math.
Res. Not. 9 (1998), 463-487.
- NTV3
- F. Nazarov, S. Treil and A. Volberg.
Tb-theorem on non-homogeneous spaces, preprint 1999.
- S
- E. M. Stein Singular integrals and
differentiability properties of functions. Princeton Univ. Press.
Princeton, N.J., 1970.
- To1
- X. Tolsa.
-boundedness of the Cauchy integral
operator for continuous measures. Duke Math. J. 98:2 (1999),
269-304.
- To2
- X. Tolsa. Cotlar's inequality and existence of
principal values for the Cauchy integral without the doubling
condition. J. Reine Angew. Math. 502 (1998), 199-235.
- To3
- X. Tolsa,
and
Calderón-Zygmund operators for non-doubling measures, Math. Ann.
To appear
- Z
- A. Zygmund, Trigonometric series, second
edition, Cambridge University Press, Cambridge, London, New York,
1968.